Covariance matrix forecasting using support vector regression

نویسندگان

چکیده

Abstract Support vector regression is a promising method for time-series prediction, as it has good generalisability and an overall stable behaviour. Recent studies have shown that can describe the dynamic characteristics of financial processes make more accurate forecasts than other machine learning techniques. The first main contribution this paper to propose methodology modelling forecasting covariance matrices based on support using Cholesky decomposition. procedure applied range-based returns, which are estimated basis low high prices. Such prices most often available with closing many series contain information about volatility relationships between returns. guarantees positive definiteness forecasted flexible, be different dependence patterns. second show example exchange rates from forex market matrix calculated proposed approach benchmark conditional correlation model. advantage suggested higher during turbulent periods, i.e., when difficult matter most.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solar Power Forecasting Using Support Vector Regression

Generation and load balance is required in the economic scheduling of generating units in the smart grid. Variable energy generations particularly from wind and solar energy resources are witnessing a rapid boost, and, it is anticipated that with a certain level of their penetration, they become noteworthy sources of uncertainty. As in the case of load demand, energy forecasting can also be use...

متن کامل

Support Vector Regression in Forecasting

Support Vector Regression (SVR), a category for Support Vector Machine (SVM) attempts to minimize the generalization error bound so as to achieve generalized performance. Regression is that of finding a function which approximates mapping from an input domain to the real numbers on the basis of a training sample. Support vector regression is the natural extension of large margin kernel methods ...

متن کامل

Short Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression

The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...

متن کامل

Support vector regression for warranty claim forecasting

Forecasting the number of warranty claims is vitally important for manufacturers/warranty providers in preparing fiscal plans. In existing literature, a number of techniques such as log-linear Poisson models, Kalman filter, time series models, and artificial neural network models have been developed. Nevertheless, one might find two weaknesses existing in these approaches: (1) they do not consi...

متن کامل

Short-Term Wind Energy Forecasting Using Support Vector Regression

Wind energy prediction has an important part to play in a smart energy grid for load balancing and capacity planning. In this paper we explore, if wind measurements based on the existing infrastructure of windmills in neighbored wind parks can be learned with a soft computing approach for wind energy prediction in the ten-minute to six-hour range. For this sake we employ Support Vector Regressi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Intelligence

سال: 2021

ISSN: ['0924-669X', '1573-7497']

DOI: https://doi.org/10.1007/s10489-021-02217-5